An analytical framework for local feedforward networks
نویسندگان
چکیده
Interference in neural networks occurs when learning in one area of the input space causes unlearning in another area. Networks that are less susceptible to interference are referred to as spatially local networks. To obtain a better understanding of these properties, a theoretical framework, consisting of a measure of interference and a measure of network localization, is developed. These measures incorporate not only the network weights and architecture but also the learning algorithm. Using this framework to analyze sigmoidal, multilayer perceptron (MLP) networks that employ the backpropagation learning algorithm on the quadratic cost function, we address a familiar misconception that single-hidden-layer sigmoidal networks are inherently nonlocal by demonstrating that given a sufficiently large number of adjustable weights, single-hidden-layer sigmoidal MLP's exist that are arbitrarily local and retain the ability to approximate any continuous function on a compact domain.
منابع مشابه
An Analytical Framework for Local Feedforward Networks 1
Although feedforward neural networks are well suited to function approximation, in some applications networks experience problems when learning a desired function. One problem is interference which occurs when learning in one area of the input space causes unlearning in another area. Networks that are less susceptible to interference are referred to as spatially local networks. To understand th...
متن کاملA new SDN-based framework for wireless local area networks
Nowadays wireless networks are becoming important in personal and public communication andgrowing very rapidly. Similarly, Software Dened Network (SDN) is an emerging approach to over-come challenges of traditional networks. In this paper, a new SDN-based framework is proposedto ne-grained control of 802.11 Wireless LANs. This work describes the benets of programmableAcc...
متن کاملA Memetic Framework for Cooperative Co-evolutionary Feedforward Neural Networks
Cooperative co-evolution has been a major approach in neuro-evolution. Memetic computing approaches employ local refinement to selected individuals in a population. The use of crossover-based local refinement has gained attention in memetic computing. This work proposes a cooperative co-evolutionary framework that utilises the strength of local refinement from memetic computing. It employs a cr...
متن کاملLocal Feedforward Networks
Although feedforward neural networks are well suited to function approximation , in some applications networks experience problems when learning a desired function. One problem is interference which occurs when learning in one area of the input space causes unlearning in another area. Networks that are less susceptible to interference are referred to as spatially local networks. To understand t...
متن کاملSpectrum Sensing Data Falsification Attack in Cognitive Radio Networks: An Analytical Model for Evaluation and Mitigation of Performance Degradation
Cognitive Radio (CR) networks enable dynamic spectrum access and can significantly improve spectral efficiency. Cooperative Spectrum Sensing (CSS) exploits the spatial diversity between CR users to increase sensing accuracy. However, in a realistic scenario, the trustworthy of CSS is vulnerable to Spectrum Sensing Data Falsification (SSDF) attack. In an SSDF attack, some malicious CR users deli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 9 3 شماره
صفحات -
تاریخ انتشار 1998